Structured QR algorithms for Hamiltonian symmetric matrices

نویسندگان

  • A. Salam
  • D. S. Watkins
  • A. SALAM
چکیده

Efficient, backward-stable, doubly structure-preserving algorithms for the Hamiltonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ela Structured Qr Algorithms for Hamiltonian Symmetric Matrices

Efficient, backward-stable, doubly structure-preserving algorithms for the Hamiltonian symmetric and skew-symmetric eigenvalue problems are developed. Numerical experiments confirm the theoretical properties of the algorithms. Also developed are doubly structure-preserving Lanczos processes for Hamiltonian symmetric and skew-symmetric matrices.

متن کامل

A multiple shift QR-step for structured rank matrices

Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving sem...

متن کامل

On Computing the Eigenvectors of Symmetric Tridiagonal and Semiseparable Matrices

A real symmetric matrix of order n has a full set of orthogonal eigenvectors. The most used approach to compute the spectrum of such matrices reduces first the dense symmetric matrix into a symmetric structured one, i.e., either a tridiagonal matrix [2, 3] or a semiseparable matrix [4]. This step is accomplished in O(n) operations. Once the latter symmetric structured matrix is available, its s...

متن کامل

Fortran 77 Subroutines for Computing the Eigenvalues of Hamiltonian Matrices II

This article describes Fortran 77 subroutines for computing eigenvalues and invariant subspaces of Hamiltonian and skew-Hamiltonian matrices. The implemented algorithms are based on orthogonal symplectic decompositions, implying numerical backward stability as well as symmetry preservation for the computed eigenvalues. These algorithms are supplemented with balancing and block algorithms, which...

متن کامل

Computing the rank revealing factorization of symmetric matrices by the semiseparable reduction

An algorithm for reducing a symmetric dense matrix into a symmetric semiseparable one by orthogonal similarity transformations and an efficient implementation of the QR–method for symmetric semiseparable matrices have been recently proposed. In this paper, exploiting the properties of the latter algorithms, an algorithm for computing the rank revealing factorization of symmetric matrices is con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017